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Abstract

High-order accurate shock-capturing schemes are capable of properly resolving discontinuities with correct wave speeds
in single-fluid Riemann problems. However, when different fluids are present, oscillations develop at interfaces. A class of
existing interface-capturing methods that suppress these oscillations is based on first- and second-order accurate recon-
structions with Roe solvers. In this paper, we extend these methods to high-order accurate WENO schemes and the HLLC
approximate Riemann solver. In particular, we show that a finite volume formulation where the appropriately averaged
primitive variables are reconstructed leads to the oscillation-free advection of an isolated interface. Furthermore, numer-
ical experiments show no spurious oscillations for problems where shockwaves and interfaces interact. We solve the Euler
equations supplemented by a stiffened equation of state to model flows of gas and liquid components. Our method is high-
order accurate, quasi-conservative, shock-capturing and interface-capturing; these properties are additionally verified by
considering one-dimensional multicomponent Riemann problems and a two-dimensional shock–bubble interaction.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

High-order accurate shock-capturing schemes are widely used in computational fluid dynamics to resolve
compressible flow features that involve both shockwaves and complex smooth structures. In particular, the
popular finite difference and finite volume essentially non-oscillatory (ENO) [17,36] and Weighted ENO
(WENO) [19,27] methods perform well in such problems. They prevent oscillations near shockwaves without
introducing excessive dissipation and offer very high resolution in smooth regions. This latter point is a serious
drawback of first- and second-order accurate methods [38]. However, naive implementations of the aforemen-
tioned schemes in compressible multicomponent flow problems give rise to oscillations at material interfaces.
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In early algorithms for computing compressible multicomponent flows, the discontinuous nature of the
fluid composition is represented by the mass fraction [23], the ratio of specific heats [20], or a level-set function
[30], and evolved according to an advection equation coupled to the Euler equations. The resulting system is
solved using first- and second-order accurate reconstructions with a Roe solver [34]. However, spurious oscil-
lations develop at interfaces. The cause of these oscillations is identified in [1], where a quasi-conservative
method based on the mass fraction formulation is proposed for gases; subsequently, this has been extended
to more general equations of state [39,35,40], and to multiphase [3] and reactive flows [6]. The difficulty resides
in maintaining the pressure equilibrium across the interface despite numerical dissipation [20] and in coupling
advection equations to the Euler system in a consistent fashion [1,11]. The implementation of non-oscillatory
methods, such as the finite difference WENO scheme in [28], does not suppress these oscillations.

In analogy to shock-capturing, the methods described above are termed interface-capturing, as the interface
is not explicitly tracked but allowed to diffuse numerically. Sharp interfaces can be achieved using interface-
tracking methods, where a level set function [31] usually tracks the interface. However, such formulations
often involve slight modifications to the governing equations. In [20,21], the energy equation is replaced by
a pressure evolution equation near interfaces. In the Ghost Fluid Method [10] and simplified versions thereof
[2,22], thermodynamically similar variables are added across interfaces to complete stencils. In [18], the inter-
nal energy is corrected based on an updated value of the ratio of specific heats. These methods do not generate
spurious oscillations at interfaces and can be used with WENO schemes. However, they are not discretely con-
servative [2,26], making them less desirable for problems where shockwaves are involved.

Our goal is to simulate compressible multicomponent flow problems while satisfying certain important
properties mentioned above. First, in order to avoid spurious oscillations near shockwaves and interfaces,
we seek shock- and interface-capturing or -tracking capabilities. Also, we wish to enforce conservation in
the discretized Euler equations. In addition, in order to be able to resolve complicated flow features with
shockwaves, we require our method to be high-order accurate. Finally, from a practical standpoint, the
scheme should also be computationally efficient and easy to implement.

In order to achieve these goals, we have extended existing quasi-conservative interface-capturing methods
[1,39] by implementing a high-order accurate WENO reconstruction and the positivity-preserving HLLC sol-
ver [45,44]. The governing equations for multicomponent flows are stated in Section 2 and the bases of our
numerical scheme are presented in Section 3. In Section 4, we examine the mechanism responsible for interface
oscillations and describe how these are suppressed. Our method is validated using benchmark problems in Sec-
tion 5. Finally, we summarize our findings and present an outlook for future studies.

2. Equations of motion

Multicomponent flows are a subset of multiphase flows where the different fluid components, characterized
by their respective (constant) ratio of specific heats, are immiscible; diffusive effects, surface tension and cav-
itation are neglected. The Euler equations govern such multicomponent flows, written here in one dimension
for simplicity:
1 As
unclea
sharp
qt þ fðqÞx ¼ 0; qðx; tÞ ¼ ðq; qu;EÞT; fðqÞ ¼ ðqu; qu2 þ P ; uðE þ P ÞÞT; ð1Þ

where q is the density, u the velocity, P the pressure and E the total energy of the fluid. To close the system, we
use the stiffened equation of state [15],
CP þP1 ¼ E � 1

2
qu2; C ¼ 1

c� 1
; P1 ¼

cP1
c� 1

: ð2Þ
For perfect gases, c is the ratio of specific heats and P1 = 0; for water, c = 5.5 and P1 = 4921.15 bar [7]. This
equation of state is thermodynamically consistent [29] and has been used extensively to model1 multicompo-
nent flows with shockwaves [7,39,35,2]. The interface between two fluids is represented by the discontinuity in
pointed out by a referee, whether this equation of state is thermodynamically consistent when the interface diffuses numerically is
r. Although this issue is beyond the scope of this paper, we nevertheless remark that in the limit, Dx! 0, the interface converges to a
one, leading us to expect appropriate behavior.
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the properties, c and P1, of the different fluid components. Since material interfaces are advected by the flow,
C and P1 obey the advection equation [1,39],
/t þ u/x ¼ 0; / ¼ ðC;P1ÞT: ð3Þ

Eqs. (1) and (3) form a quasi-conservative system [39]. The Euler equations (1) are conservative, ensuring that
q, qu and E are conserved, while the advection equations (3), which are non-conservative, specify the correct
location of the interface, so that the relevant properties are defined. Although not fully conservative, the sys-
tem conserves the required physical quantities.

We note that the advection equations (3) can be combined with the continuity equation to form conserva-
tive equations,
ðq/Þt þ ðqu/Þx ¼ 0; ð4Þ
where / could be any function of c and P1. The system (1) and (4) is fully conservative. However, it is shown
in Section 4.1 that this coupling will generate oscillations at interfaces using standard shock-capturing
schemes, and that C and P1 must be advected.
3. Spatial discretization

3.1. Finite volume vs. conservative finite difference approximations

We follow [37] to compare finite volume (FV) and conservative finite difference (FD) ENO and WENO
approximations. We will show in Section 4 that a FV formulation must be used to suppress oscillations gen-
erated at interfaces, so we describe it in greater detail in the following sections. In the computational cell,
Ii = [xi � Dx/2; xi + Dx/2], Eq. (1) can be written in semi-discrete form,
d~qi

dt
¼ � f iþ1=2 � f i�1=2

Dx
; ð5Þ
where ~qi approximates the conserved variable, q, at i, and fi+1/2 approximates the flux, f(q), at the cell edge,
i + 1/2. In the FV formulation, ~qi is the cell average value of q in Ii, and is reconstructed on either side of each
cell edge, thus yielding a Riemann problem with left and right states, qL

iþ1=2 and qR
iþ1=2. An approximate Rie-

mann solver provides the correct upwind numerical flux. In the FD formulation, ~qi is the point value of q at xi,
and positive and negative fluxes defined at the cell centers are interpolated at the cell edges. A flux-splitting
scheme is used to compute the correct upwind numerical flux.

3.2. Finite volume reconstruction

In first-order FV methods, the left and right states of the Riemann problem are reconstructed from the cell
averages in a piecewise constant fashion. Such methods can be extended to second-order accuracy by using
limiters [25]. ENO reconstruction [17,36] is based on adaptive stencils, such that the optimal stencil is chosen.
Given the cell average values of a function, the function is interpolated on either side of the cell edges. This
provides high-order accuracy and essentially non-oscillatory behavior. WENO reconstruction [19,27] consists
of a convex combination of all the candidate stencils, and constitutes an improvement on ENO schemes on
many levels [19,38].

The reconstruction is often performed in characteristic space because of the self-similar nature of the Rie-
mann problem for the Euler equations (1). In systems of nonlinear equations, oscillations can develop in com-
ponent-wise reconstruction due to the interaction of discontinuities of different characteristic fields, regardless
of the CFL constraint [17,32]. The characteristic form of the Euler equations is
ow

ot
þ K

ow

ox
¼ 0; ð6Þ
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where
dw ¼ du� dP
qc
; dq� dP

c2
; duþ dP

qc

� �T

; K ¼ Diag½u� c; u; uþ c�: ð7Þ
We note that the advection equations are already in characteristic form. The variables are first locally decom-
posed onto the respective characteristic fields and then reconstructed; thereafter, they are projected back into
physical space [37]. Although this reconstruction is more expensive computationally, each field is treated sep-
arately, thus avoiding collisions between characteristics.

Multi-dimensional ENO and WENO schemes can easily be implemented in the FD formulation dimension
by dimension [37]. However, a two-dimensional FV reconstruction is computationally intensive, because two
one-dimensional reconstructions are needed per grid point [37]. Since the fluxes must be averaged along the
cell edges, a Gaussian quadrature rule is used in multiple dimensions [13,43].

3.3. The HLLC approximate Riemann solver

Because the Riemann problem resulting from the reconstruction is computationally expensive to solve
exactly, an approximate Riemann solver is used. Examples thereof include the Roe [34] and HLL [16] solvers;
the Lax–Friedrichs solver is a special case of the HLL solver [44]. Roe solvers are less dissipative, but more
computationally intensive. More importantly, they do not preserve positivity [8]. This is a critical property
when computing problems where low densities and pressures are achieved, which can occur in a number of
compressible multicomponent flow calculations. Thus, we favor HLL solvers, in particular the HLLC solver
[45], because it resolves discontinuities sharply, and isolated shockwaves and contacts exactly [5]. Given allow-
able left and right states, the HLLC solver preserves positivity [5]. By definition, WENO is a convex recon-
struction of the candidate stencils [19]. Therefore, given that the cell average values are in an allowable
physical set, the left and right states generated by WENO will be in this allowable set as well, so that the over-
all scheme preserves positivity.

The HLLC solver is an extension to the HLL solver, whereby the contact discontinuity is restored [45,44].
The HLLC flux can be written:
fHLLC ¼ 1þ signðs�Þ
2

fL þ s� q�L � qL
� �� �

þ 1� signðs�Þ
2

fR þ sþ q�R � qR
� �� �

; ð8Þ
where the intermediate ‘‘star’’ state is defined as
q�k ¼ v�k
qk

qks�

Ek þ ðs� � ukÞ qks� þ P k

sk�uk

� 	
0
BB@

1
CCA; v�k ¼ sk � uk

sk � s�
; ð9Þ
where k = L, R. Following [8], the wave speeds are given by:
s� ¼ minð0; sLÞ; sþ ¼ maxð0; sRÞ; ð10Þ

where
sL ¼ min ðu� cÞROE
; uL � cL

� 	
; sR ¼ max ðuþ cÞROE

; uR þ cR
� 	

: ð11Þ
The intermediate wave speed is computed according to [5],
s� ¼ P R � P L þ qLuLðsL � uLÞ � qRuRðsR � uRÞ
qLðsL � uLÞ � qRðsR � uRÞ : ð12Þ
3.4. Adapting the HLLC solver to the advection equation

Although hyperbolic, advection equations are not conservation laws, so it is not immediately clear how to
implement any approximate Riemann solver consistently with the Euler equations. The Lax–Friedrichs, Roe
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and HLL solvers have previously been adapted to the advection equation [1,39,35]. In order to adapt the
HLLC solver, it is tempting follow the same thought process by considering two states connected by a wave
moving at speed, ui. Eq. (3) becomes, in semi-discrete form,
d/i

dt
¼ � ui

Dx
1þ signðuiÞ

2
/L

iþ1=2 � /L
i�1=2

� 	
þ 1� signðuiÞ

2
/R

iþ1=2 � /R
i�1=2

� 	
 �
: ð13Þ
It is easy to verify that this leads to the oscillation-free advection of an isolated interface and propagation of
isolated shocks. However, if the pressure varies strongly for non-constant /, the wavespeed in the advection
equation, ui, is inconsistent with that of the contact discontinuity, s�i�1=2, in the Euler equations. To overcome
this difficulty, we use the chain rule to write Eq. (3) as
/t þ gx � /ux ¼ 0; g ¼ u/: ð14Þ

The second term is a conservative flux, and the velocity differentiation in the third term enables us to adapt the
HLLC solver. Integrating the advection equation (14) over a cell, i, we obtain
d/

dt

����
i

¼ � 1

Dx
ðgiþ1=2 � gi�1=2Þ þ

1

Dx

Z xiþ1=2

xi�1=2

/
ou
ox

dx: ð15Þ
This equation is exact. We make the following approximation to evaluate the integral:
d/

dt

����
i

¼ � 1

Dx
ðgiþ1=2 � gi�1=2Þ þ

1

Dx
/iðuiþ1=2 � ui�1=2Þ: ð16Þ
Eq. (16) is exact far from interfaces, where / is assumed constant. At discontinuities, shock-capturing schemes
can achieve no better than first-order accuracy [25]; since the integral in Eq. (15) is evaluated using a midpoint
rule and the derivative using a centered scheme, it is at worst second-order accurate. Therefore, this approx-
imation does not deteriorate the overall order of accuracy of the method. Based on the conservative form of
the advection equation [44], we compute the velocity in the source term as
uHLLC ¼ 1þ signðs�Þ
2

uL þ s�ðv�L � 1Þ
� �

þ 1� signðs�Þ
2

uR þ sþðv�R � 1Þ
� �

: ð17Þ
4. Interface capturing

4.1. Occurrence of oscillations at isolated interfaces

Since our scheme is shock-capturing, isolated shockwaves and rarefaction waves are treated appropriately.
Across isolated material interfaces, the model equations (1) and (3) preserve the pressure equilibrium [39]. Our
goal is to provide a spatial discretization scheme that satisfies this condition.

To motivate our numerical method, we follow [1,2,39] and consider the problem of the advection of an iso-
lated interface between two different gases at constant speed. The kinematic and dynamic interface conditions
require u and P to be uniform in time and space; therefore the Euler equations (1) become:
oq
ot
¼ �u

oq
ox
; ð18aÞ

oðquÞ
ot
¼ �u2 oq

ox
; ð18bÞ

oE
ot
¼ �u

u2

2

oq
ox
þ P

oC
ox

� �
: ð18cÞ
Combining Eqs. (18a) and (18b), we obtain du/dt = 0. Eq. (18c) and the equation of state (2) yield dP/dt = 0 if
oC
ot
¼ �u

oC
ox
: ð19Þ
In FV methods, the conservative variables, q = (q,qu,E,qC)T, are reconstructed. However, the numerical dis-
sipation introduced in these variables, in particular in E and qC, does not maintain the pressure equilibrium
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[20,35], especially when using a nonlinear reconstruction such as WENO. For the same reason, FD methods
fail, because the fluxes are interpolated. In order to preserve the pressure equilibrium in the discrete equations,
we emulate the behavior of the continuous equations (18) and (19) by reconstructing u and P individually.
Since the elements of the interpolating stencils are identical near isolated interfaces, the equilibrium in these
variables is preserved. Thus, we conclude that the primitive variables, u = (q,u,P,C)T, must be reconstructed,
rather than q.

This has further implications for the advection equation. First, the specific function, C(c) = 1/(c � 1), must
be advected, not just any arbitrary function of c [39]. Thus, model equations (1) and (3) must be used. Also,
the advection equation must be discretized in a fashion consistent with the energy equation [1,35]. Coupling a
level set equation as in [11] does not necessarily guarantee this requirement and thus might cause oscillations.
It is straightforward to treat the case of P1 in an analogous fashion [39].

This analysis shows that if the above conditions are not met a discontinuity in C causes an error in pressure
at the interface, which generates oscillations that propagate with the flow. Methods where there is no explicit
discontinuity in C (e.g., Ghost Fluid Methods [10,2]) or where C does not enter the equations at interfaces
(e.g., Pressure Evolution methods [20,21]) are not affected by this problem.
4.2. Reconstruction of the primitive variables

At the beginning of each time step, we are given the cell averages of the conservative quantities. In order to
reconstruct the primitive variables, we define local average velocity, �v, and pressure, �p,
�vi,
qui

�qi
; �pi,

Ei � �qi
�v2

i
2

Ci
: ð20Þ
The average velocity, �v, is analogous to the density-weighted (Favre [9]) average used in compressible turbu-
lence models. These variables, along with �qi and Ci, are reconstructed using WENO. This provides the left and
right states for the Riemann problem at the cell edges.

To understand the impact of this methodology on the accuracy of the scheme, we define the sliding average
of a function, q(x), by
�qðxÞ, 1

Dx

Z xþDx=2

x�Dx=2

qðnÞdn; �qi ¼ �qðxiÞ; ð21Þ
so that in smooth regions, �qðxÞ ¼ qðxÞ þOðDx2Þ. ENO and WENO reconstructions have the following prop-
erty [17,37]:
~qðxiÞ ¼ �qi; ð22Þ

where ~qðxÞ is a pointwise approximation to q(x). Therefore, the reconstruction preserves the total amount of q

in each cell. Eq. (21) implies that �uðxÞ ¼ uðxÞ þOðDx2Þ. Using Taylor series expansion, we observe that
�vðxÞ ¼ uðxÞ þOðDx2Þ, so that �v approximates u(x) to the same order that �u does. This justifies the definitions
in Eq. (20), which are the building blocks of the reconstruction. From Eq. (22), given the reconstructed den-
sity, ~qðxÞ, and momentum, fquðxÞ, the reconstructed velocity, ~vðxÞ, satisfies
~qðxÞ~vðxÞ ¼ fquðxÞ: ð23Þ

In other words, ~vðxÞ is a high-order accurate approximation to the velocity, which preserves the total momen-
tum in each cell. Therefore, qui+1/2 = qi+1/2vi+1/2 to high-order accuracy. Similarly, ~pðxÞ is a high-order accu-
rate approximation to the pressure, which preserves the total energy in each cell. The convergence analysis
presented in Section 5.1 indicates that the proper convergence rate is achieved. Characteristic reconstruction
can easily be implemented, as the characteristic variables are naturally expressed in terms of primitive vari-
ables. Finally, we remark that the Euler equations (1) are still written in flux difference form [25],
f iþ1=2 ¼ fðiþ1Þ�1=2: ð24Þ
Eqs. (23) and (24) show that the numerical scheme is discretely conservative [25] for the Euler equations.
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4.3. Oscillation-free advection of an isolated interface

We show that our scheme maintains pressure equilibrium for the problem of the advection of an isolated
interface between two gases at constant speed, u. Without loss of generality, we consider the case |sk| > u > 0,
so that q*L = qL and u*L = uL = u. From the interface conditions, the velocity, u, and the pressure, P, are uni-
form. Then, using the HLLC solver (8) and (17) and the reconstruction of the primitive variables described
above, the Euler and advection equations (1) and (3) can be marched forward by a time step:
�qnþ1
i ¼ �qn � Dt

Dx
u qL

iþ1=2 � qL
i�1=2

� 	
; ð25aÞ

qunþ1
i ¼ qun

i �
Dt
Dx

u2 qL
iþ1=2 � qL

i�1=2

� 	
; ð25bÞ

Enþ1
i ¼ En

i �
Dt
Dx

u
u2

2
qL

iþ1=2 � qL
i�1=2

� 	
þ P CL

iþ1=2 � CL
i�1=2

� 	
 �
; ð25cÞ

Cnþ1
i ¼ Cn

i �
Dt
Dx

u CL
iþ1=2 � CL

i�1=2

� 	
: ð25dÞ
Since u is constant, qun
i ¼ �qn

i u. The equation of state (2) and Eq. (25) can be combined to yield the velocity and
pressure at the next time step:
unþ1
i ,

qunþ1
i

�qnþ1
i

¼ u; ð26aÞ

P nþ1
i ,

Enþ1
i � qunþ1

ið Þ2
2�qnþ1

i

Cnþ1
i

¼ P : ð26bÞ
Therefore, our scheme maintains equilibrium in velocity and pressure for the advection of an isolated inter-
face. This can be generalized to fluids with P1 6¼ 0 and to multiple dimensions. However, we note that this
cannot readily be extended to problems where interfaces interact with shockwaves; nevertheless, we demon-
strate in the difficult test cases of Section 5 that no oscillations are observed.
4.4. Algorithm

In light of the preceding sections, we propose the following algorithm to compute compressible multicom-
ponent flows, based on the model equations (1) and (3). Given the cell averages, �qi and /i, at some time step

(1) Build the average primitive variables, ui.
(2) Using WENO, reconstruct the primitive variables, uL

iþ1=2 and uR
iþ1=2.

(3) Build the conservative variables, qL
iþ1=2 and qR

iþ1=2, and the fluxes fL
iþ1=2 and fR

iþ1=2.
(4) Use the HLLC solver to compute the numerical flux, fi+1/2.
(5) Use the adaptation to the HLLC solver to compute the right-hand side of the advection equations.
(6) March �qi and /i forward in time.

This procedure requires approximately the same number of operations as a normal WENO code, and is no
more difficult to implement. The reconstruction can be applied to the local characteristic fields [37]; however
the transformation matrices are those relating to the primitive variables. This is done by multiplying ui by the
left Roe matrix after step one, and uL

iþ1=2 and uR
iþ1=2 by the right Roe matrix after step two.

This algorithm can be extended to multiple dimensions. After the WENO reconstruction, uL
iþ1=2;j and uR

iþ1=2;j
are reconstructed in the transverse direction, thus yielding the values at j� 1=2

ffiffiffi
3
p

required by the Gaussian
quadrature for the numerical fluxes [13,43].
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5. Results

In the following test cases, we compare the present method with our implementation of FD and FV WENO
schemes. The main differences lie in the model equations used and the variables that are interpolated or recon-
structed using WENO, as shown in Table 1. The FD and fully conservative schemes are implemented using
existing methods [37] and are expected to behave in a similar fashion, since the model equations are identical.
The quasi-conservative FV scheme is implemented following [35] and is expected to generated smaller oscil-
lations than the former schemes. The present scheme follows Algorithm 4.4 and is not expected to generate
oscillations. The time-marching is handled by a third-order TVD Runge–Kutta scheme [12,36], unless other-
wise specified. We denote by WENOr a WENO scheme of order r. The grid and time stepping are uniform,
with Dt/Dx = 0.2 for simplicity.

5.1. Convergence analysis

In order to assess the convergence of the present method with respect to that of the quasi-conservative FV
scheme in Table 1, we consider an acoustics problem in a single gas component. We perturb the primitive vari-
ables about a base state:
Table
Comp
recons

Schem

FD
Fully c
Quasi-
Presen
qðx; tÞ ¼ q0 þ �q0ðx; tÞ; uðx; tÞ ¼ �u0ðx; tÞ; P ðx; tÞ ¼ P 0 þ �P 0ðx; tÞ; ð27Þ

where � is small. Using conservation of mass and momentum, and the equation of state,
oP
oq

����
s

¼ c2; ð28Þ
where c is the speed of sound, it can be shown that q 0, u 0 and P 0 satisfy the second-order wave equation, with
wave speed c0, to first order in �. We start with an initial perturbation, f(x) = sin8(px), such that the initial
conditions are
qðx; 0Þ ¼ 1þ �f ðxÞ; uðx; 0Þ ¼ 0; P ðx; 0Þ ¼ 1

c
þ �f ðxÞ: ð29Þ
As � increases, the wave steepens and ultimately breaks, so that a shockwave forms. When � � 0.4, the wave
breaks within a period.

Figs. 1 and 2 compare the L1 and L1 errors in density between the present scheme and the quasi-conser-
vative FV scheme for � = 10�4 and � = 0.1, respectively, after one period. To evaluate the error, we take the
reference to be the computed solution with a much larger number of points (Nexact = 1280) than those we are
studying (N = 10, 20, 40, 80, 160). WENO3 and WENO5 are implemented without characteristic reconstruc-
tion, along with the HLLC solver, though there is not much difference if characteristic reconstruction or dif-
ferent solvers are used [37]. The time-marching is handled using fifth-order Runge–Kutta.

The agreement between the two methods is excellent for � = 10�4. We note a slight departure from the �5
slope near N = 160, as the ‘‘exact’’ solution is approached. The solution is still smooth for � = 0.1, although
the wave starts to steepen, making this case more difficult to compute. As should be anticipated, the conver-
gence rate departs from the expected slope, especially in the L1 plot. The present method performs slightly
better than the quasi-conservative FV scheme when using WENO3, but slightly worse when using WENO5.
1
arison between the different FD and FV WENO schemes, listing the model equations and variables that are interpolated/
tructed using WENO

e Model WENO variables

(1) and (4) (qu,qu2 + P, (E + P)u,quC)T

onservative FV (1) and (4) (q,qu,E,qC)T

conservative FV (1) and (3) (q,qu,E,C)T

t (1) and (3) (q,u,P,C)T



Fig. 1. L1 and L1 errors in density for � = 10�4 using WENO3 (n: quasi-conservative FV; h: present scheme) and WENO5 (}: quasi-
conservative FV; s: present scheme); dashed and solid lines have slopes �3 and �5, respectively.

Fig. 2. L1 and L1 errors in density for � = 0.1 using WENO3 (n: quasi-conservative FV; h: present scheme) and WENO5 (}: quasi-
conservative FV; s: present scheme); dashed and solid lines have slopes �3 and �5, respectively.
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These discrepancies indicate different sensitivity to the steepening of the waves. However, this feature is not
very relevant in practical multi-dimensional computations, because the discrepancy is small and the resolution
is rarely better than the highest shown here.

5.2. Isolated interface problem

We illustrate the occurrence of oscillations for a simple test case, namely the advection of a gas-gas inter-
face, with initial states,
ðq; u; P ; cÞTL ¼ ð1; 0:5; 1=1:4; 1:4ÞT;
ðq; u; P ; cÞTR ¼ ð10; 0:5; 1=1:4; 1:6ÞT:

ð30Þ
The domain is periodic with 100 points and WENO5 is used, without characteristic reconstruction. The Lax–
Friedrichs solver and the corresponding flux-splitting [37] are implemented in an attempt to compare the
schemes in Table 1. Fig. 3 shows density, velocity, pressure and c profiles after the interface has moved the
length of the domain, for the FD, fully conservative and quasi-conservative FV cases.

Oscillations develop at the interface at the first time step and propagate thereafter, even though the differ-
ence in c is small. The FD and fully conservative schemes behave in a similar fashion and generate larger oscil-
lations than the quasi-conservative FV scheme, as expected. Although not shown here, the magnitude of the
oscillations decreases as the mesh is refined [2]. Nevertheless, the interface is advected at approximately the
correct speed, despite the small errors in velocity due to the oscillations. On the other hand, no oscillations
other than round-off are observed when using the present scheme, as seen in Fig. 4, where the base velocity
and pressure have been subtracted. In addition, the interface propagates at the correct speed. Fig. 5 plots
the residual total mass, momentum and energy for all four schemes, after subtraction of the base values.
All schemes show discrete conservation to round-off error.



Fig. 3. Advection of a material interface (n: FD; s: fully conservative FV; h: quasi-conservative FV); the solid line is the exact solution.

Fig. 4. Advection of a material interface using the present scheme; the solid line is the exact solution (base u and P have been subtracted).
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5.3. Shock-tube problems

Although not shown here, the Sod [41] and Lax [24] problems were computed using the present scheme and
produced good agreement with the analytical solution. A more difficult shock-tube problem is the following
gas–liquid Riemann problem used to model underwater explosions [7,39]:
ðq; u; P ; c; P1ÞTL ¼ ð1:241; 0; 2:753; 1:4; 0ÞT;
ðq; u; P ; c; P1ÞTR ¼ ð0:991; 0; 3:059� 10�4; 5:5; 1:505ÞT:

ð31Þ



Fig. 5. Residual total mass (bottom set), momentum (top set) and energy (middle set) for the advection of a material interface, after
subtraction of the base values (dotted: FD; dashed: fully conservative FV; long-dash: quasi-conservative FV; solid: present scheme).
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In this problem, the gas is highly compressed, as illustrated by the large pressure and small density ratios. The
domain has 100 points and WENO5 with characteristic reconstruction is used, along with the HLLC solver.
Fig. 6 shows density, velocity, pressure and c profiles at time, 0.1. We do not include P1 because its plot is
similar to that of c. Fig. 7 shows the residual total mass, momentum and energy, after subtraction of the base
values.

The computed solution agrees well with the exact solution and compares favorably to previous findings
[7,39]. The wave speeds are correct and there are no oscillations at the interface. Mass, momentum and energy
are conserved to round-off error.

We now consider a multicomponent Sod problem with much larger pressure and density ratios [46]:
ðq; u; P ; cÞTL ¼ ð10; 0; 10; 1:4ÞT;
ðq; u; P ; cÞTR ¼ ð0:125; 0; 0:1; 1:2ÞT:

ð32Þ
Fig. 8 shows density, velocity, pressure and c profiles at time, 1.6, and Fig. 9 depicts the residual total mass,
momentum and energy, after subtraction of the base values.
Fig. 6. Gas–liquid shock-tube problem using the present scheme at time, 0.1; the solid line is the exact solution.



Fig. 7. Residual total mass (solid), momentum (dashed) and energy (dotted) for gas–liquid shock-tube problem using the present scheme,
after subtraction of the base values.

Fig. 8. Modified Sod problem using the present scheme at time, 1.6; the solid line is the exact solution.

Fig. 9. Residual total mass (solid), momentum (dashed) and energy (dotted) for the modified Sod problem using the present scheme, after
subtraction of the base values.
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Again, the computed solution agrees very well with the exact solution. Mass, momentum and energy are
conserved to round-off error; the divergence of these values at large times illustrates that the shockwave is
close to the boundary. We note that in the c plot there is more dissipation towards the left side of the interface,
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because of the original density ratio; although not shown here, as N is increased, the computed solution con-
verges to the exact solution.

5.4. Shock–bubble interaction

The previous examples show that the present method converges at the proper rate, and that the correct
waves speeds are obtained in one-dimensional problems; we expect this behavior to hold in two dimensions
as well. It is verified in [43] that the two dimensional FV WENO schemes converge at the proper rate. The
extension of Section 4.2 to two dimensions is trivial, as the Euler equations are in flux-difference form, and
the reconstruction is conservative; therefore, for two-dimensional problems similar to the previous one-dimen-
sional problems, conservation is satisfied.

An example of two-dimensional compressible multicomponent flow is the interaction between a shockwave
and a cylindrical bubble. This problem has been studied experimentally in [14], where a Mach 1.22 shockwave
in air impacts upon a helium cylinder (qHe = 0.138, cHe = 1.67). The bubble has a 50 mm diameter and the
width of the shock-tube is 89 mm. Several numerical studies have been undertaken, in which a non-conserva-
tive scheme with adaptive mesh refinement [33] and a FD-WENO5 scheme [28] were used.

5.4.1. One-dimensional problem

We first consider the corresponding one-dimensional problem, to show convergence and understand the
early wave interactions. WENO5 with characteristic reconstruction is used, along with the HLLC solver;
non-reflecting boundary conditions [42] are implemented. Figs. 10 and 11 show density, velocity, pressure
and c profiles shortly before the left-moving transmitted shockwave leaves the domain, for the present and
quasi-conservative FV schemes, respectively. Results with 100 and 400 points are presented, in order to show
convergence.

The density plots depict the interface and certain waves quite well. However, a better understanding of the
wave interactions is achieved by considering the pressure and velocity plots. Initially, the incident shockwave
hits the bubble from the left. Upon impact, a shockwave is transmitted into the bubble, whereas an expansion
wave is reflected. The shockwave inside the bubble propagates to the other interface and, upon impact, gen-
erates a transmitted shockwave and a reflected shockwave. This phenomenon continues as the reflected shock-
wave trapped in the bubble impacts either interface. In Figs. 10 and 11, the left-most wave is the first
transmitted shockwave; the next wave is the second transmitted shockwave, after two reflections off the inter-
Fig. 10. One-dimensional shock–bubble interaction, using the present scheme (dotted: N = 100; solid: N = 400).



Fig. 11. One-dimensional shock–bubble interaction, using the quasi-conservative FV scheme (dotted: N = 100; solid: N = 400).
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face; the next wave is the internally reflected shockwave after three reflections; the right-most wave is the first
transmitted shockwave, after one reflection upon the far interface. The two left-most waves are propagating to
the left and the two right-most to the right.

The quasi-conservative FV scheme clearly exhibits unacceptable oscillations, especially in the pressure and
velocity. On the other hand, such oscillations do not occur when using the present scheme. Both schemes con-
verge; the amplitude of the oscillations present in the former scheme decreases as the mesh is refined [2].

5.4.2. Two-dimensional problem
For the two-dimensional problem, an 800 · 400 grid is used, with reflecting boundary conditions on the top

and along the centerline. The initial conditions are specified from a FV discretization. For a given radius, the
appropriate properties are assigned inside and outside the bubble. Any cell that is crossed by the interface is
given properties weighted by the fraction of both fluids. The initial shockwave is a straight discontinuity, with
no smoothing.

We present idealized Schlieren images [33,28], which allow the visualization of the general wave structure,
and density lines, which show the details of the flow, in Fig. 12 for the present scheme. Frame A is taken
shortly after the shockwave has impacted the bubble, frame B shortly before the first transmitted shockwave
has left the domain, frame C shortly before the first reflection from the top wall leaves the domain and frame
D at a later time. The pressure along the horizontal centerline and the vertical line at the middle of the domain
are plotted in Fig. 13 at times corresponding to frames A and B, respectively.

The results are in good qualitative agreement with [14,33,28]. The first wave interactions (frame A) and the
subsequent reflections off the wall and interface (frame B) are well captured. The Kelvin–Helmholtz instability
that develops along the interface and the jet formation (frames C and D) are consistent with prior findings.
The high-order accurate scheme allows the complex patterns due to the wave interactions to be well resolved;
no spurious oscillations are observed at interfaces or shockwaves. We note in passing that the start-up error
generated by the initial discontinuity [4] is advected by the flow, but has no dynamical effect. This could have
been avoided by starting the shockwave farther from the bubble [33], or by breaking a wave to form a
shockwave.

On the other hand, Fig. 14 shows that, when the quasi-conservative FV scheme is used, oscillations are gen-
erated at the interface in the form of spurious waves (frame A), as in the one-dimensional problem. Their main
dynamical effect is to perturb the interface; this triggers the Kelvin–Helmholtz instability earlier than expected
(frames B and C), as might be the case with the scheme of [28], which does not strictly suppress oscillations.



Fig. 12. Idealized Schlieren images and density lines of an interaction between a helium bubble and a Mach 1.22 shockwave in air, using
the present scheme.

Fig. 13. Pressure along the horizontal symmetry centerline (y = 0) on the left and the vertical centerline (x = 0) on the right corresponding
to frames A (dotted) and B (solid), using the present scheme.
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The interface becomes more smeared, which causes a decrease in the strength of the wave fronts that pass
through it. These undesirable features do not occur when using the present method. We briefly note that
the slight jaggedness of the two thin density lines inside the bubble in frame A for both cases is due to the
initial irregular contour of the bubble on a Cartesian grid.



Fig. 14. Idealized Schlieren images and density lines of an interaction between a helium bubble and a Mach 1.22 shockwave in air, using
the quasi-conservative FV scheme.
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6. Conclusions

We have presented a high-order accurate quasi-conservative scheme, which is both shock- and interface-
capturing, for computing compressible multicomponent flows. Thus, no spurious oscillations are generated
at isolated shockwaves or interfaces, and smooth regions are highly resolved. Discrete conservation is enforced
in the Euler equations and the advection equations are treated in a consistent fashion.

The key idea behind our method is to use a finite volume WENO formulation where the appropriately aver-
aged primitive variables are reconstructed; the conservative reconstruction and flux-difference form in the
Euler equations ensure discrete conservation. We use the positivity-preserving HLLC solver, and adapt it
to the advection equations, so that it is consistent with the Euler equations; thus correct wavespeeds are
obtained. Numerical experiments in one dimension verify that no conservation errors occur and that the con-
vergence rate is correct; this can be generalized to multiple dimensions. The method is no more difficult to
implement than a standard finite volume WENO scheme, nor is it more expensive computationally.

Simulating multicomponent flows to high-order accuracy, while enforcing conservation, is the first step to
studying more complex systems, such as multiphase flow phenomena, where the physics must to be repre-
sented in greater detail. Surface tension, change of phase and diffusive effects, which are of considerable impor-
tance in various bubble dynamics and cavitation processes, can then be incorporated.
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